Name: \qquad

PHYSICS
 Unit Conversion Practice

Conversion of length/distances (metric system)

$1 \mathrm{~km}=1000 \mathrm{~m}$	There are 1000 meters in 1 kilometer.
$1 \mathrm{~m}=100 \mathrm{~cm}$	There are 100 centimeters in 1 meter.
$1 \mathrm{~m}=1000 \mathrm{~mm}$	There are 1000 millimeters in 1 meter

Conversion	Using conversion factor	Decimal place alternative
$\mathbf{k m} \rightarrow \mathbf{m}$	m km x 1000 Multiply km by 1000	Move decimal to right by 3 places
$\mathbf{m} \rightarrow \mathbf{k m}$	$\mathrm{km}=\mathrm{m} / 1000$ Divide m by 1000	Move decimal to left by 3 places
$\mathbf{c m} \rightarrow \mathbf{m}$	$\mathrm{m}=\mathrm{cm} / 100$ Divide cm by 100	Move decimal to left by 2 places
$\mathbf{m} \rightarrow \mathbf{c m}$	$\mathrm{cm}=\mathrm{m} \times 100$ Multiply m by 100	Move decimal to right by 2 places
$\mathbf{m m} \rightarrow \mathbf{m}$	$\mathrm{m}=\mathrm{mm} / 1000$ Divide mm by 1000	Move decimal to left by 3 places
$\mathbf{m} \rightarrow \mathbf{m m}$	mm $=\mathrm{m} \times 1000$ Multiply m by 1000	Move decimal to right by 3 places

Examples

Convert 2.0 km to meters	$2.0 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=2,000 \mathrm{~m}$
Convert 450 cm to meters	$450 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=4.50 \mathrm{~m}$
Convert 16 cm to meters	$16 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.16 \mathrm{~m}$
Convert 2920 m to km	$2920 \mathrm{~m} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=2.920 \mathrm{~km}$
Convert 0.72 m to cm	$0.72 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=72 \mathrm{~cm}$

Convert from one distance unit to another distance unit

Convert 5.00 km to meters	
Convert 275 cm to meters	
Convert 1450 cm to meters	
Convert 10.33 km to meters	
Convert 4200 m to km	
Conver 165 cm to meters	

Conversion of mass units

$1 \mathrm{~kg}=1000 \mathrm{~g} \quad$ There are 1000 grams in 1 kilogram

Conversion	Using conversion factor	Decimal place alternative
$\mathbf{k g} \rightarrow \mathbf{g}$	$\mathrm{g}=\mathrm{kg} \times 1000$ Multiply kg by 1000	Move decimal to right by 3 places
$\mathbf{g} \rightarrow \mathbf{k g}$	$\mathrm{kg}=\mathrm{g} / 1000$ Divide g by 1000	Move decimal to left by 3 places

Examples

Convert 0.25 kg to grams	$0.25 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=250 \mathrm{~g}$
Convert $12,240 \mathrm{~g}$ to kg	$12,240 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=12.24 \mathrm{~kg}$

Convert from one mass unit to another mass unit

Convert 8600 g to kg	
Convert $16,340 \mathrm{~g}$ to kg	
Convert 2.33 kg to g	

Conversion of time units

$1 \mathrm{hr}=60 \mathrm{~min} \quad$ There are 60 minutes in 1 hour
$1 \mathrm{hr}=3600 \mathrm{~s} \quad$ There are 3600 seconds in 1 hour
$1 \mathrm{~min}=60 \mathrm{~s} \quad$ There are 60 seconds in 1 minute

Conversion	Using conversion factor
$\mathbf{h r} \rightarrow \mathbf{m i n}$	min $=\mathrm{hr} \times 60$ Multiply hr by 60
$\mathbf{m i n} \rightarrow \mathbf{h r}$	$\mathrm{hr}=\min / 60$ Divide hr by 60
$\mathbf{h r} \rightarrow \mathbf{s}$	$\mathrm{s}=\mathrm{hr} \times 3600$ Multiply hr by 3600
$\mathbf{s} \rightarrow \mathbf{h r}$	$\mathrm{hr}=\mathrm{s} / 3600$ Divide s by 3600
$\mathbf{m i n} \rightarrow \mathbf{s}$	$\mathrm{s}=\min \mathrm{x} 60$ Multiply min by 60
$\mathbf{s} \rightarrow \mathbf{m i n}$	min $=\mathrm{s} / 60$ Divide s by 60

Examples

Convert 2.5 hr to min	$2.5 \mathrm{hr} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=150 \mathrm{~min}$
Convert 1.25 hr to s	$1.25 \mathrm{~g} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}}=4500 \mathrm{~s}$
Convert 3.0 min to s	$3.0 \mathrm{~min} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=180 \mathrm{~s}$
Convert 400 s to min	$400 \mathrm{~s} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=6.67 \mathrm{~min}$

Convert from one time unit to another time unit

Convert 6.00 min to seconds	
Convert 3.75 min to seconds	
Convert 2.5 hr to seconds	
Convert 5 hr to seconds	
Convert 3.00 hr to min	
Convert 1200 sec to min	

Calculating Averages

Average is the statistical center of a distribution. To calculate the average:

- Add all values of measurements together.
- Divide by the number of

$$
\bar{x}=\frac{\Sigma x_{i}}{n}=\frac{x_{1}+x_{2}+x_{3} \ldots+x_{n}}{n}
$$ measurements.

Examples

$121,143,137,138,132$ $(\mathrm{n}=5)$	$\bar{x}=\frac{\Sigma x_{i}}{n}=\frac{121+143+137+138+132}{5}=134$
$87,98,103,77,82,85$ $(\mathrm{n}=6)$	$\bar{x}=\frac{\Sigma x_{i}}{n}=\frac{87+98+103+77+82+85}{6}=88.7$

Calculate the average of the number sets

$10,13,15,20$ $(n=4)$	
$30,40,41,48,59,62$ $(n=6)$	
$40,52,76,78,81,89$, 94,103 $(n=8)$	
$107,122,124,135$, $149,151,153,168$ $(n=8)$	

