Physics Unit 7: Electricity

Slides

Charge \& Atoms

What is charge?
What are things made of?

Early Investigations

- There is a property of matter called electric charge
- Three types: positive, negative, and neutral
- These terms came from Ben Franklin

- Charge is conserved
- Opposite charges attract
- Like charges repel

Structure of the Atom

- Ancient Greeks (Democritus)
- Idea of atoms

DEMOCRITUS
©s marmore antiquo apud $\sqrt[S]{ } \cdot \mathcal{E}$.

Structure of the Atom

- J. J. Thomson
- "Plum pudding"
- Positive charge with little negative charges spread about

Structure of the Atom

- Ernest Rutherford
- Small, positively charged nucleus in center of atom

Structure of the Atom

- Niels Bohr
- Electrons orbit nucleus in circles

Structure of the Atom

Protons

- Positive charge
- In the nucleus

Neutrons

- Neutral charge
- In the nucleus

Electrons

- Negative charge

- The mobile charge carrier

Law of Charges

Opposite charges attract each other.
Like charges repel each other.

- Positive attracts negative
- Positive repels positive
- Negative repels negative

Law of Conservation of Charge

There is a total amount of charge in the entire Universe that does not change

- If something gains charge, it came from something else
- If something loses charge, it goes to something else

Charge (q)

- In units of Coulombs (C).
$-+q=$ positive charge; $-q=$ negative charge

Fundamental charges
1 proton $=+1.61 \times 10^{-19}$ Coulombs
1 electron $=-1.61 \times 10^{-19}$ Coulombs

1 Coulomb of charge $=6.28 \times 10^{18}$ electrons
1 Coulomb of charge $=6.28 \times 10^{18}$ protons

Charge

ALL objects, whether positive, negative, or neutral, have both positive (protons) and negative (electrons) charges in them. What gives an object its overall charge is whether the positive and negative charges are balanced:

- Positively charged \rightarrow there are more protons than electrons
- Negatively charged \rightarrow there are more electrons than protons
- Neutral \rightarrow there are an equal number of protons and electrons

Static Electricity

Static Electricity

- Stationary charges
- Electrons become separated from atoms when materials interact (like rubbing materials together).
- Surface of objects become charged

Electron-rich surface $=$ negative object
Electron-poor surface = positive object

Insulators vs. Conductors

Insulators: charge remains stationary on them

- Ex. Plastic, wood, glass, ceramic

Conductors: charge moves freely through them

- Ex. Metal, water (with dissolved minerals), graphite (pencil lead)

Conductors

- Party-goers analogy

Ground

A large reservoir of charge that can absorb electrons without a noticeable change in its overall charge

For example, literally, the Earth

If you want to discharge static electricity,
 connect it to a conductor connected to the ground

How do objects accumulate static charge?

- Static Electricity by Friction: rubbing objects together, one object strips electrons off of the other object.
- Static Electricity by Conduction (Contact): a charged object touches a neutral object, gives some charge to the neutral object.
- Static Electricity by Induction: inducing polarity or a surface charge because of electrons shifting.

Creation of static charge by friction

Before combing the hair, the comb (insulator) and hair are electrically-neutral.

After combing the hair, comb stripped electrons from the hair.

Comb $=$ negatively-charged
Hair $=$ positively-charged

Charging a Neutral Object by Conduction

Creating static charge by induction

"Inducing" a surface charge on a neutral object by bringing a charged object close to it.

- No electrons are lost or gained by the charged object.
- Object remains electrically neutral.

Atoms on the surface become polarized.

- Electrons in the atoms on the surface will shift toward positive charges or shift away from negative charges.

Inducing Electron Movement Within a Conductor

A neutral pop restingon an insulatingstand

With a negative object held neadry, electrons are repelled and induced into moving to the opposite side of the can.

Charge within the can is polarized - separated into opposites.

Charging by Induction

Diagram i .

Two metal spheres are mounted on insulatingstands.

Diagram ii.

The presence of a-charge induces e^{-}to move from sphere A to B. The twosphere system is polarized.

Diagram iii.

Sphere B is separated from sphere A using the insulating stand. The two spheres have opposite charges.

Diagram iv.

The excess charge distributes itself unifornly over the surface of the spheres.

Charging by Induction

Charging a Single Sphere by Induction

Ametal sphere is mounted on a stand.

A - balloon induces e^{-}movernent from the left side to the right side of the balloon.

When touched, the e^{-} leave the sphere through the hand and enter
"the ground."

The sphere is now changed positively, charge evenly the escess charge distributes itself

Diagram v .

The positive attracted to the balloon. over the sphere.

Static Discharge

If excess static charge on an object is given a path to leave the object, it will quickly move, creating a spark and a shock

Coulomb's Law

How strong is the force of electrical attraction/repulsion?

Four Fundamental Forces

1. Strong force
2. Weak force
3. Electromagnetic force
4. Gravity

Coulomb's Law

The electrostatic force between charged particles is proportional to the product of the charges and inversely proportional to the square of the distance between the charged objects.

- Electrostatic force is a mutual force (equal and opposite regardless of charge differences)
- Electrostatic force can be attraction or repulsion.
- The force is 10 -billion, billion times greater than the attraction force of gravity.

Coulomb's Law

$$
F=k \cdot \frac{q_{1} \cdot q_{2}}{d^{2}} \quad \begin{aligned}
& \text { Proportional to } \\
& \text { product of charges }
\end{aligned}
$$

$\mathrm{q}_{1}=$ charge on object $1(\mathrm{C})$
$\mathrm{q}_{2}=$ charge on object 2 (C)
d = distance between charged objects
$\mathrm{k}=$ electrostatic constant, $9.00 \times 10^{9} N \frac{m^{2}}{C^{2}}$
$\mathrm{F}=$ attraction or repulsion force (N)

$$
F=k \cdot \frac{q_{1} \cdot q_{2}}{d^{2}} \longleftarrow \quad \text { Proportional to }
$$

Charges are multiplied together.
When opposite charges attract, F is NEGATIVE.
The work is decreasing the distance between the opposite charges.
When like charges repel each other, F is POSITIVE.
The work is increasing the distance between the like charges.

Magnitude of Charges

- Greater the product of charges, stronger force
- Lesser the product of charges, weaker force

Lesser charges, weaker force.

Distance Between Charges

- Closer together, stronger force
- Farther apart, weaker force

Very far apart, weaker force.

Coulomb's Law vs. Universal Gravitation

$$
\begin{array}{cc}
F_{e}=k_{e} \frac{q_{1} q_{2}}{d^{2}} & F_{g}=G \frac{m_{1} m_{2}}{d^{2}} \\
q: \text { electric charge }(+ \text { or }-) & m: \text { mass }(+) \\
k_{\mathrm{e}}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{c}^{2} & G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
\end{array}
$$

