Honors Physics Unit 5: Work & Energy

Slides

Kinetic Energy Energy associated with motion $KE = \frac{1}{2}mv^2$ m = mass of object (kg)v = velocity or speed of object (m/s)

Energy Transfers

There are different types of energy transfers. Two that we will study are:

- 1. Work!
 - Work is a transfer of energy
- 2. Waves
 - Waves transfer energy, we'll learn more about this next unit

Work-Kinetic Energy Theorem

When work is done on a system and the only change in the system is the speed, then the amount of net work done equals the change in the KE of the system.

$$W_{net} = \Delta KE = KE_f - KE_i$$

Note:

- Positive work increases KE (energy transferred into system)
- Negative work decreases KE (energy transferred *out* of the system)

Lifting a Bowling Ball

System: the bowling ball

When I lift the bowling ball, I do positive work on the system, meaning I transfer energy into the system. If I transferred energy into the system, why did the KE of the system not increase?

Mechanical Energy

Mechanical Energy

The sum of the kinetic energy and potential energy of an object is referred to as **mechanical energy**:

ME = KE + GPE + EPE

ME = mechanical energy KE = kinetic energy GPE = gravitational potential energy EPE = elastic potential energy

Conservation of Mechanical Energy

In a **closed system** with **no friction**, the mechanical energy of a system is conserved. Its value does not change.

$$ME_i = ME_f$$

As the object moves up and down, speeds up and slows down, the energy will transform between KE and PE, with the total amount not changing.

Conservation of Mechanical Energy

$$ME_i = ME_f$$

$$KE_i + GPE_i + EPE_i = KE_f + GPE_f + EPE_f$$

$$\frac{1}{2}mv_i^2 + mgh_i + \frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mgh_f + \frac{1}{2}kx_f^2$$

Mechanical energy: Potential energy and kinetic energy of the *whole object*

- Based on the mass of the object
- Based on how fast the object moves
- Based on the object's position

Internal energy: the total energy contained within an object due to the kinetic energy and potential energy of the *molecules* that make up the object

Forms of Energy Included in Internal Energy

- Chemical energy stored in the chemical bonds holding the atoms together in a molecule.
- Attraction energy (potential) between molecules (London forces, electrostatic, or hydrogen bonding). Energy holding molecules together.
- **Kinetic energy** of molecules (translational, rotational, or vibrational) how fast the molecules move (influences temperature)

Friction Increases Internal Energy

Friction in a system converts mechanical energy into internal energy

When there is friction, mechanical energy is NOT conserved

- Mechanical energy decreases
- Internal energy increases

Note: Total energy (mechanical + internal) does not change