Honors Physics Unit 4: Momentum & Impulse

Slides

MOMENTUM

Momentum can be called...

"Magnitude or quantity of motion" of a moving object "Inertia in motion" of a moving object

Momentum is the combination of "how much is moving" and 'how fast it is moving".

$$\vec{p} = m \cdot \vec{v}$$

$$\underbrace{\mathbf{v} = 25 \text{ m/s}}_{\mathbf{m} = 600 \text{ kg}} p = 15,000 \text{ kg} \frac{m}{s}$$

$$\mathbf{m} = 600 \text{ kg}$$
A 600 kg automobile moving at 25 m/s will have 15,000 kg·m/s of momentum.

What is momentum?

IMPORTANT: Momentum is a **vector** quantity (has magnitude *and* direction)

Direction is the same as the direction of the velocity

Rebounding

Two 2 kg objects are dropped and hit the ground with a velocity of -5 m/s. Object A comes to a rest when it hits the ground. Object B bounces and has a velocity of +2 m/s after hitting the ground. Which object has the larger change in momentum?

Rebounding (bouncing off a collision) causes a **greater** change in momentum than just stopping.

Kinetic Energy

Phone cases, Chipotle burrito phone cases, air bags, seat belts, automobile crumple zones, football helmets, stretchy rock climber ropes, catcher's mitts, bending your knees when you land from a jump

All these things reduce the force on an object during an impact.

How do they do it?

They all use a physics principle called the impulse-momentum theorem

$$\vec{F}_{net} = m \cdot \vec{a} = m \frac{\Delta \vec{v}}{t} = m \frac{\vec{v}_f - \vec{v}_i}{t} = \frac{m \vec{v}_f - m \vec{v}_i}{t} = \frac{\vec{p}_f - \vec{p}_i}{t} = \frac{\Delta \vec{p}}{t}$$
$$\vec{F}_{net} = \frac{\Delta \vec{p}}{t}$$
$$\vec{F} \cdot t = \Delta \vec{p}$$
The Impulse-Momentum Theorem

Г

Phone cases, Chipotle burrito phone cases, air bags, seat belts, automobile crumple zones, football helmets, stretchy rock climber ropes, catcher's mitts, bending your knees when you land from a jump

All these things reduce the force on an object during an impact.

How do they do it?

They all reduce **force** by increasing the **contact time** of the impact.

The crash test dummy's head experiences the **SAME IMPULSE** *with or without the air bag or shoulder restraints*, however, the impact force of its face differs due to the contact time.

Shoulder restraints and airbags increase the contact time between the impact of the automobile and the head/body's collision with the dashboard and steering wheel.

A golf ball has a mass of 0.10 kg. It sits upon the tee. The golf club strikes the ball, accelerating the ball to 100 m/s. The contact time between the club and the ball is 0.1 seconds.

- Calculate the initial momentum.
- Calculate the final momentum.
- Calculate the acceleration.
- Calculate the impulse acting upon the ball.
- Calculate the force of impact between the ball and the club.

Law of Conservation of Momentum

Definition of <u>System</u>

In physics, a **system** is defined as some portion of the Universe that you are choosing to focus on.

• Can be one object, multiple objects, a region of space

• Examples: you, two billiard balls on a table, the classroom

Definition of <u>System</u>

A system is **closed** if nothing enters or leaves the system and there are no forces acting on the system from sources outside the system (no external forces)

A system is **open** if objects can enter or leave the system or there are external forces acting on the system

How to solve for final velocities of two colliding objects after an elastic collision:

$$v_{1f} = \frac{(m_1 - m_2) \cdot v_{1i} + (2m_2 \cdot v_{2i})}{m_1 + m_2}$$
$$v_{2f} = \frac{(m_2 - m_1) \cdot v_{2i} + (2m_1 \cdot v_{1i})}{m_1 + m_2}$$

#2. Two objects have an elastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of 5 m/s. Object 2 has a mass of 15 kg and moves to the right with a velocity of 3 m/s.

- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object 1's velocity after the collision?
- What will happen to Object 2's velocity after the collision?

#3. Two objects have an elastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of 3 m/s. Object 2 has a mass of 15 kg and moves to the left with a velocity of -5 m/s.

- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object 1's velocity after the collision?
- What will happen to Object 2's velocity after the collision?

#4. Two objects have an elastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of 3 m/s. Object 2 has a mass of 20 kg and moves to the left with a velocity of -5 m/s.

- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object 1's velocity after the collision?
- What will happen to Object 2's velocity after the collision?

- Predict the momentum transfer (who transfers momentum to whom).
 Object #2 will transfer momentum to Object #1.
 - What will happen to Object 1's velocity after the collision? Object #1 will exchange momentums and velocities with Object #2 during collision. Object #1 will move at -5.0 m/s
 - What will happen to Object 2's velocity after the collision? Object #2 will exchange momentums and velocities with Object #1 during collision. Object #2 will move at 3.0 m/s.

#1. Two objects have an inelastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of 5 m/s. Object 2 has a mass of 10 kg and is stationary.

• Predict the velocity and direction of the conjoined motion after the collision.

#2. Two objects have an inelastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of 5 m/s. Object 2 has a mass of 15 kg and moves to the right with a velocity of 3 m/s.

• Predict the momentum transfer the direction of the conjoined object's motion after the collision.

#3. Two objects have an inelastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of 3 m/s. Object 2 has a mass of 15 kg and moves to the left with a velocity of -5 m/s.

• Predict the momentum transfer the direction of the conjoined object's motion after the collision.

