Honors Physics
 Unit 4: Momentum \& Impulse

Slides

Momentum

What is momentum?

$$
\vec{F}_{n e t}=m \cdot \vec{a}=m \frac{\Delta \vec{v}}{t}=m \frac{\left(\vec{v}_{f}-\vec{v}_{i}\right)}{t}=\frac{\left(m \vec{v}_{f}\right)-\left(m \vec{v}_{i}\right)}{t}=\frac{\vec{p}_{f}-\vec{p}_{i}}{t}
$$

We give the quantity mass times velocity the name momentum. We use the symbol " p " for momentum.

$$
\begin{aligned}
& \substack{p=\text { momentum } \\
m=\operatorname{mass}(\mathrm{kg}) \\
v=\text { velocity }(\mathrm{m} / \mathrm{s})} \\
& \\
& \\
& \quad \text { The units for momentum are: } \mathrm{kg} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Momentum is the mass (kg) multiplied by velocity (m / s).

MOMENTUM

Momentum can be called...
"Magnitude or quantity of motion" of a moving object "Inertia in motion" of a moving object

Momentum is the combination of "how much is moving" and 'how fast it is moving".

$$
\underset{\substack{\vec{p}=m \cdot \vec{v} \\ m=600 \mathrm{~kg}}}{\substack{\mathrm{v}=25 \mathrm{~m} / \mathrm{s}}} \quad p=15,000 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

A 600 kg automobile moving at $25 \mathrm{~m} / \mathrm{s}$ will have $15,000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ of momentum.

$\vec{p}=m \cdot \vec{v}$
 Momentum is proportional to mass (inertia)

- The greater the mass, the greater the momentum.
- The smaller the mass, the lesser the momentum.
"How much" is in motion

$\vec{p}=m \cdot \vec{v}$

Momentum is proportional to the object's velocity.

- The greater the velocity, the greater the momentum.
- The lower the velocity, the lesser the momentum.
"How fast" \rightarrow how much energy in motion.

What is momentum?

IMPORTANT: Momentum is a vector quantity (has magnitude and direction)

Direction is the same as the direction of the velocity

Jet: Very large mass \& very large velocity = very large momentum (huge inertia and huge energy)

- More force needed to change velocity (speed up, slow down, or stop).
- More distance needed to change velocity (speed up, slow down, or stop).

Honeybee: Very small mass \& very small velocity = very small momentum (small inertia and small energy)

- Very small force needed to change velocity (speed up, slow down, or stop).
- Very short distances needed to change velocity (speed up, slow down, or stop).

TPQ (Though provoking question) time!

Consider the following. A car and a cargo truck are moving on the street.

- The mass of the car is 500 kg .
- The mass of the cargo truck is 3000 kg .

Under which circumstance(s) would the car...

1. have a momentum less than the truck's momentum?
2. have a momentum equal to the truck's momentum?
3. have a momentum greater than the truck's momentum?

500 kg

Calculating Change in Momentum ($\Delta \vec{p}$)

1. Calculate the initial momentum $\left(\vec{p}_{i}=m \cdot \vec{v}_{i}\right)$
2. Calculate the final momentum $\left(\vec{p}_{f}=m \cdot \vec{v}_{f}\right)$
3. $\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}$

Rebounding

Two 2 kg objects are dropped and hit the ground with a velocity of -5 m / s. Object A comes to a rest when it hits the ground. Object B bounces and has a velocity of $+2 \mathrm{~m} / \mathrm{s}$ after hitting the ground. Which object has the larger change in momentum?

Rebounding (bouncing off a collision) causes a greater change in momentum than just stopping.

Kinetic Energy

Translational Kinetic Energy (KE): The energy of motion; the energy of an object moving at a given velocity from one position to another

$$
K E=\frac{1}{2} \cdot m \cdot v^{2}
$$

Kinetic energy is proportional to mass and velocity squared.

- The greater the mass, the greater the KE.
- The smaller the mass, the lesser the KE.

Note that the velocity is squared:

- Double the velocity, 4-times the KE.
- Triple the velocity, 9-times the KE.

Momentum-Impulse Theorem

How do we reduce force during an impact?
How can we make cars safer during a car accident?
How can we prevent our phones from breaking when dropped?

Phone cases, Chipotle burrito phone cases, air bags, seat belts, automobile crumple zones, football helmets, stretchy rock climber ropes, catcher's mitts, bending your knees when you land from a jump

All these things reduce the force on an object during an impact.
How do they do it?

They all use a physics principle called the impulse-momentum theorem

Forces cause acceleration \rightarrow acceleration causes change in velocity \rightarrow change in velocity causes change in momentum

Therefore, forces cause changes in momentum

But...forces alone are not the whole story, time plays a role in changes in momentum as well

$$
\vec{F}_{n e t}=m \cdot \vec{a}=m \frac{\Delta \vec{v}}{t}=m \frac{\vec{v}_{f}-\vec{v}_{i}}{t}=\frac{m \vec{v}_{f}-m \vec{v}_{i}}{t}=\frac{\vec{p}_{f}-\vec{p}_{i}}{t}=\frac{\Delta \vec{p}}{t}
$$

$$
\vec{F}_{n e t}=\frac{\Delta \vec{p}}{t}
$$

$$
\vec{F} \cdot t=\Delta \vec{p}
$$

The Impulse-Momentum Theorem

Impulse

Impulse $=\vec{F} \cdot t$

Impulse is defined as a force \vec{F} applied to an object over a length of time t (called the contact time)

Impulse is a vector (magnitude \& direction)
Unit: $\mathrm{N} \cdot \mathrm{s}=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}}$

Examples

- Hammer hitting a nail

- Bat hitting a baseball
- Club hitting a golf ball

Impulse-Momentum Theorem

The impulse-momentum theorem says that the impulse on an object equals the change in its momentum

Classroom Practice Problems

- A 1350 kg car has a velocity of $22.0 \mathrm{~m} / \mathrm{s}$ to the north. When braking rapidly, it stops in 4.50 s .
- What was the momentum of the car before braking?
- What is the magnitude of the force required to stop the car?
- Answers:
$-2.97 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ To the north
$-6.60 \times 10^{3} \mathrm{~N}$

What's the relationship between the applied force and the contact time for a given change in the momentum (for example, $100 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$)?

$$
\Delta \vec{p}=100 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}=\vec{F} \cdot t
$$

Force	Time
100	1
50	2
25	4
10	10
4	25
2	50
1	100
0.1	1000

What happens to the contact time as the force decreases?

What happens to the contact time as the force increases?

For a given change in momentum (equivalently, a given impulse), the force and the contact time are inversely proportional

- If the contact time is very small (e.g., instantaneous, sudden, jerking), the force causing the acceleration is very, very large.
- If the contact time is longer (e.g., cushioned or slowed gradually), the force causing the acceleration is much smaller.

Phone cases, Chipotle burrito phone cases, air bags, seat belts, automobile crumple zones, football helmets, stretchy rock climber ropes, catcher's mitts, bending your knees when you land from a jump

All these things reduce the force on an object during an impact.

How do they do it?

They all reduce force by increasing the contact time of the impact.

The punch causes the SAME IMPULSE, however, the impact force differs due to the contact time.

Shorter contact time with a sudden stop. Stronger force at impact.

Longer contact time with a gradual stop. Weaker force.

The car experiences the SAME IMPULSE, however, the impact force differs due to the contact time.

The crash test dummy's head experiences the SAME IMPULSE with or without the air bag or shoulder restraints, however, the impact force of its face differs due to the contact time.

Shoulder restraints and airbags increase the contact time between the impact of the automobile and the head/body's collision with the dashboard and steering wheel.

Long jumpers land in the sand or sawdust pit. The sand and sawdust distributes the momentum of impact as it scatters, extending the jumper's rest time by $0.5-1$ second. This reduces the jerk on the body during landing.

Classroom Practice Problems

- A 65 kg passenger in a car travels at a speed of $8.0 \mathrm{~m} / \mathrm{s}$. If the passenger is stopped by an airbag in 0.75 s , how much force is required?
- Answer: $6.9 \times 10^{2} \mathrm{~N}$
- If the car does not have an air bag and the passenger is instead stopped in 0.026 s when he strikes the dashboard, by what factor does the force increase?
- Answer: $\mathbf{F}=2.0 \times 10^{4} \mathrm{~N}$ so it is-29 times greater

The baseball player hits the baseball with the bat. The ball is initially moving at $40 \mathrm{~m} / \mathrm{s}$. After it is hit, the ball moves at $-40 \mathrm{~m} / \mathrm{s}$. The contact
e time between the bat and ball is 0.15 seconds. The mass of the baseball is 0.145 kg

- Calculate the initial momentum.
- Calculate the final momentum.
- Calculate the acceleration.
- Calculate the impulse acting upon the ball.
- Calculate the force of impact between the ball and the baseball bat.

Initial momentum. $\quad p_{0}=m \cdot v_{0}=0.145 \mathrm{~kg} \cdot 40 \mathrm{~m} / \mathrm{s}=5.8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Final momentum. $\quad p_{f}=m \cdot v_{f}=0.145 \mathrm{~kg} \cdot-40 \mathrm{~m} / \mathrm{s}=-5.8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Acceleration. $\quad a=\frac{v_{f}-v_{0}}{t}=\frac{-40-40 \mathrm{~m} / \mathrm{s}}{0.15 \mathrm{~s}}=-533 \mathrm{~m} / \mathrm{s}^{2}$
Impulse

$$
J=\Delta p=p_{f}-p_{0}=-5.8-5.8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}=-11.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

Force

$$
F=m \cdot a=\frac{\Delta p}{t}=\frac{-11.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}}{0.15 \mathrm{~s}}=-77.3 \mathrm{~N}
$$

A golf ball has a mass of 0.10 kg. It sits upon the tee. The golf club strikes the ball, accelerating the ball to $100 \mathrm{~m} / \mathrm{s}$. The contact time between the club and the ball is 0.1 seconds.

- Calculate the initial momentum.
- Calculate the final momentum.
- Calculate the acceleration.
- Calculate the impulse acting upon the ball.
- Calculate the force of impact between the ball and the club.

Initial momentum. $\quad p_{0}=m \cdot v_{0}=0.10 \mathrm{~kg} \cdot 0 \mathrm{~m} / \mathrm{s}=0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Final momentum. $\quad p_{f}=m \cdot v_{f}=0.10 \mathrm{~kg} \cdot 100 \mathrm{~m} / \mathrm{s}=10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Acceleration.

$$
a=\frac{v_{f}-v_{0}}{t}=\frac{100-0 \mathrm{~m} / \mathrm{s}}{0.1 \mathrm{~s}}=1000 \mathrm{~m} / \mathrm{s}^{2}
$$

Impulse

$$
J=\Delta p=p_{f}-p_{0}=10-0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}=10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

Force

$$
F=m \cdot a=\frac{J}{t}=\frac{10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}}{0.1 \mathrm{~s}}=100 \mathrm{~N}
$$

A car crashed through a brick wall. The velocity of the car immediately before impact was $16 \mathrm{~m} / \mathrm{s}$. The velocity of the immediately car after impact was $6 \mathrm{~m} / \mathrm{s}$. The impact time was 1.22 sec . The car's mass is 450 kg .

- Calculate the initial momentum.
- Calculate the final momentum.
- Calculate the acceleration.
- Calculate the impulse acting upon the car.
- Calculate the force of impact between car and the wall.

Initial momentum. $\quad p_{0}=m \cdot v_{0}=450 \mathrm{~kg} \cdot 16 \mathrm{~m} / \mathrm{s}=7200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Final momentum.
$p_{f}=m \cdot v_{f}=450 \mathrm{~kg} \cdot 6.0 \mathrm{~m} / \mathrm{s}=2700 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Acceleration.

$$
a=\frac{v_{f}-v_{0}}{t}=\frac{6-16 \mathrm{~m} / \mathrm{s}}{1.22 \mathrm{~s}}=-8.19 \mathrm{~m} / \mathrm{s}^{2}
$$

Impulse

$$
J=\Delta p=p_{f}-p_{0}=2700-7200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}=-4500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

Force

$$
F=m \cdot a=\frac{J}{t}=\frac{-4500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}}{1.22 \mathrm{~s}}=-3688 \mathrm{~N}
$$

Two eggs were dropped from 10 m above the ground. One egg landed to rest on a cushioned pillow. The other egg hit the sidewalk without any cushion. The mass of each egg was 0.080 kg . Both were moving $14.8 \mathrm{~m} / \mathrm{s}$ immediately before impact.

The egg that impacted the sidewalk came to rest in 0.04 seconds.

The egg that landed on the cushion came to rest in 0.72 seconds.

- Calculate the initial momentum.
- Calculate the final momentum.
- Calculate the acceleration.
- Calculate the impulse acting upon the eggs.
- Calculate the force of impact acting upon the eggs.

Without pillow With pillow
Initial momentum.
$p_{0}=-1.184 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad p_{0}=-1.184 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Final momentum. $\quad p_{f}=0 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad p_{f}=0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Acceleration. $\quad a=29.6 \mathrm{~m} / \mathrm{s}^{2} \quad a=1.64 \mathrm{~m} / \mathrm{s}^{2}$
Impulse
$J=\Delta p=1.184 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad J=\Delta p=1.184 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Force
$F=2.36 N$
$F=0.13 N$

Law of Conservation of Momentum

Definition of System

In physics, a system is defined as some portion of the Universe that you are choosing to focus on.

- Can be one object, multiple objects, a region of space
- Examples: you, two billiard balls on a table, the classroom

Definition of System

A system is closed if nothing enters or leaves the system and there are no forces acting on the system from sources outside the system (no external forces)

A system is open if objects can enter or leave the system or there are external forces acting on the system

Law of Conservation of Momentum

In a closed system, the total momentum of interacting objects remains constant.

IN OTHER WORDS

If objects interact, the sum of the momenta of all objects before the collision must equal the sum of momenta of all objects after the collision.

$$
\text { TOTAL } p \text { (before) }=\operatorname{TOTAL} p \text { (after) }
$$

Law of Conservation of Momentum

- Consequence of Newton's $3^{\text {rd }}$ Law
- All forces come in pairs that have equal magnitude, opposite direction, and act on different objects

Examples of Conservation of Momentum

- Recoil
- Explosions
- Rockets

Conservation of Momentum Example

Before explosion:

Grenade is at rest.
Momentum is zero.

After explosion:
Sum of momentum of all flying pieces is still zero.

Solving Conservation of \vec{p} Problems

1. Find total initial momentum
2. Find total final momentum
3. Set them equal and solve for your unknown

$$
\begin{aligned}
\vec{p}_{1, i}+\vec{p}_{2, i} & =\vec{p}_{1, f}+\vec{p}_{2, f} \\
m_{1} \vec{v}_{1, i}+m_{2} \vec{v}_{2, i} & =m_{1} \vec{v}_{1, f}+m_{2} \vec{v}_{2, f}
\end{aligned}
$$

Elastic \& Inelastic Collisions

Law of Conservation of Momentum

In a closed system, the total momentum of interacting objects remains constant.

IN OTHER WORDS

If objects interact (collide), the sum of the momenta of all objects before the collision must equal the sum of momenta of all objects after the collision.

$$
\text { TOTAL } p(\text { before })=\text { TOTAL } p(\text { after })
$$

Elastic collisions $=$ perfect collisions

Rigid objects collide and rebound off of each other without damage, without friction or heat at impact, without sticking together, and without loss of kinetic energy.

- Momentum is conserved.
- Kinetic energy is conserved.

Note: in the real world, truly perfect collisions never happen.

Momentum is conserved: The sum of the momenta before the collision must equal the sum of the momenta after the collision.

$$
\begin{aligned}
\text { TOTAL } p \text { (before }) & =\text { TOTAL } p \text { (after) } \\
p_{1, \mathrm{i}}+p_{2, \mathrm{i}} & =p_{1, \mathrm{f}}+p_{2, \mathrm{f}} \\
\left(\mathrm{~m}_{1} \cdot \mathrm{v}_{1}\right)+\left(\mathrm{m}_{2} \cdot \mathrm{v}_{2}\right) & =\left(\mathrm{m}_{1} \cdot \mathrm{v}_{1}\right)+\left(\mathrm{m}_{2} \cdot \mathrm{v}_{2}\right)
\end{aligned}
$$

Kinetic energy is conserved: The sum of the KEs of objects before the collision must equal the sum of the KEs of the objects after the collision.

After the collision

TOTAL $K E$ (before) $=$ TOTAL $K E$ (after)

$$
K E_{1, \mathrm{i}}+K E_{2, \mathrm{i}}=K E_{1, \mathrm{f}}+K E_{2, \mathrm{f}}
$$

RULE 1. The object with the greater momentum before the collision will transfer some of its momentum to the object with the lesser momentum before the collision.

Less momentum
before collision-gains momentum from other object during collision

$$
\begin{aligned}
& \mathrm{v}=3 \mathrm{~m} / \mathrm{s} \\
& \mathrm{p}=30 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

More momentum before collision-loses momentum to other object during collision

$$
\begin{aligned}
& \mathrm{v}=-2 \mathrm{~m} / \mathrm{s} \\
& \mathrm{p}=-40 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

RULE 2. The object with the greater momentum before the collision will experience a decrease in speed after the collision. It will be moving slower after the collision compared to its speed before the collision. (Transferred momentum to other object)

RULE 3. The object with the lesser momentum before the collision will experience an increase in speed after the collision. It will be moving faster after the collision compared to its speed before the collision. (Gained momentum from other object)

RULE 4. If two colliding objects have equal masses, the objects exchange momenta and exchange velocities during the collision.

$$
\begin{aligned}
& 0 \mathrm{~m} / \mathrm{s} \\
& p=0 \mathrm{kgm} / \mathrm{s}
\end{aligned}
$$

How to solve for final velocities of two colliding objects after an elastic collision:

$$
\begin{aligned}
& v_{1 f}=\frac{\left(m_{1}-m_{2}\right) \cdot v_{1 i}+\left(2 m_{2} \cdot v_{2 i}\right)}{m_{1}+m_{2}} \\
& v_{2 f}=\frac{\left(m_{2}-m_{1}\right) \cdot v_{2 i}+\left(2 m_{1} \cdot v_{1 i}\right)}{m_{1}+m_{2}}
\end{aligned}
$$

\#1. Two objects have an elastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 10 kg and is stationary.

- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object 1's velocity after the collision?
- What will happen to Object 2's velocity after the collision?
- Predict the momentum transfer (who transfers momentum to whom).

Object \#1 will transfer momentum to Object \#2.

- What will happen to Object l's velocity after the collision?
Object \#1 will move slower after the collision compared to its velocity before the collision.
- What will happen to Object 2's velocity after the collision?
Object \#2 will move faster after the collision compared to its velocity before the collision.
\#2. Two objects have an elastic collision.
Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 15 kg and moves to the right with a velocity of $3 \mathrm{~m} / \mathrm{s}$.
- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object l's velocity after the collision?
- What will happen to Object 2's velocity after the collision?
- Predict the momentum transfer (who transfers momentum to whom).

Object \#1 will transfer momentum to Object \#2.

- What will happen to Object l's velocity after the collision?
Object \#1 will move slower after the collision compared to its velocity before the collision.
- What will happen to Object 2's velocity after the collision?
Object \#2 will move faster after the collision compared to its velocity before the collision.
\#3. Two objects have an elastic collision.
Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 15 kg and moves to the left with a velocity of $-5 \mathrm{~m} / \mathrm{s}$.
- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object l's velocity after the collision?
- What will happen to Object 2's velocity after the collision?
- Predict the momentum transfer (who transfers momentum to whom).

Object \#2 will transfer momentum to Object \#1.

- What will happen to Object l's velocity after the collision?
Object \#1 will move faster after the collision compared to its velocity before the collision.
- What will happen to Object 2's velocity after the collision?
Object \#2 will move slower after the collision compared to its velocity before the collision.
\#4. Two objects have an elastic collision.
Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 20 kg and moves to the left with a velocity of $-5 \mathrm{~m} / \mathrm{s}$.
- Predict the momentum transfer (who transfers momentum to whom).
- What will happen to Object l's velocity after the collision?
- What will happen to Object 2's velocity after the collision?
- Predict the momentum transfer (who transfers momentum to whom).

Object \#2 will transfer momentum to Object \#1.

- What will happen to Object l's velocity after the collision? Object \#1 will exchange momentums and velocities with Object \#2 during collision. Object \#1 will move at $\mathbf{- 5 . 0} \mathbf{~ m} / \mathrm{s}$
- What will happen to Object 2's velocity after the collision? Object \#2 will exchange momentums and velocities with Object \#1 during collision. Object \#2 will move at $3.0 \mathrm{~m} / \mathrm{s}$.

Inelastic collisions = imperfect collisions

Objects collide and are damaged/deformed during collision

Perfectly Inelastic Collision: the objects stick together after the collision

- Momentum is conserved.
- Kinetic energy is lost during collision. KE before collision is greater than KE after collision.

RULE 1. The mass of the conjoined objects after the collision is the sum of the masses of the objects before the collision. Mass is conserved during collision.

The mass of the conjoined objects is 30 kg , the sum of the 10 kg and 20 kg colliding masses.

RULE 2. The velocity of the conjoined objects after the collision must be the mass-average of the velocities of the objects before the collision. The magnitude of the velocity after collision must be "in between" the velocities of the two objects before the collision.

$1.33 \mathrm{~m} / \mathrm{s}$ is "in-between" $10 \mathrm{~m} / \mathrm{s}$ and $-3 \mathrm{~m} / \mathrm{s}$.

RULE 3. After the collision, the conjoined objects will move in the same direction as the object with the most momentum before the collision.

The conjoined objects will move right after the collision because the blue circle had the greater momentum before the collision.

Inelastic Collisions (conjoined)
 Law of Conservation of Momentum

$$
\begin{gathered}
\text { TOTAL } p \text { (before })=\text { TOTAL } p \text { (after) } \\
p_{1, \mathrm{i}}+p_{2, \mathrm{i}}=p_{12, \mathrm{f}} \\
\left(\mathrm{~m}_{1} \cdot \mathrm{~V}_{1}\right)+\left(\mathrm{m}_{2} \cdot \mathrm{v}_{2}\right)=\mathrm{m}_{12} \cdot \mathrm{v}_{12}
\end{gathered}
$$

Inelastic Collisions (conjoined) Kinetic Energy is NOT conserved.

$$
\begin{gathered}
\text { TOT } \mathrm{KE}_{\text {(before) }}>\text { TOT KE }_{\text {(after) }} \\
\mathbf{K E}_{\mathbf{1}}+\mathbf{K E}_{\mathbf{2}}>\mathbf{K E}_{\mathbf{1 2}}
\end{gathered}
$$

> \#1. Two objects have an inelastic collision.
> Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 10 kg and is stationary.

- Predict the velocity and direction of the conjoined motion after the collision.

\#2. Two objects have an inelastic collision.

Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 15 kg and moves to the right with a velocity of $3 \mathrm{~m} / \mathrm{s}$.

- Predict the momentum transfer the direction of the conjoined object's motion after the collision.

> \#3. Two objects have an inelastic collision.
> Before collision: Object 1 has a mass of 20 kg and moves to the right with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Object 2 has a mass of 15 kg and moves to the left with a velocity of $-5 \mathrm{~m} / \mathrm{s}$.

- Predict the momentum transfer the direction of the conjoined object's motion after the collision.
- \#1. Predict the velocity and direction of the conjoined motion after the collision.
Objects will conjoin and move to the right. The velocity will be between $0 \mathrm{~m} / \mathrm{s}$ and $5.0 \mathrm{~m} / \mathrm{s}$.
- \#2. Predict the velocity and direction of the conjoined motion after the collision.
Objects will conjoin and move to the right. The velocity will be between $3.0 \mathrm{~m} / \mathrm{s}$ and $5.0 \mathrm{~m} / \mathrm{s}$.
- \#3. Predict the velocity and direction of the conjoined motion after the collision.
Objects will conjoin and move to the left. The velocity will be between $3.0 \mathrm{~m} / \mathrm{s}$ and $-5.0 \mathrm{~m} / \mathrm{s}$.

