Vehicle \#1 has a mass of 500 kg and moves with a velocity of $10 \mathrm{~m} / \mathrm{s}$.

1. \qquad Vehicle \#2 has a mass of 1000 kg and moves with a velocity of $10 \mathrm{~m} / \mathrm{s}$.
A. Vehicle 1's momentum is 2-times greater than Vehicle 2's momentum.
B. Vehicle 1's momentum is 4 -times greater than Vehicle 2's momentum.
C. Vehicle 1 's momentum is $1 / 2$ the momentum of Vehicle 2.
D. Vehicle 1 's momentum is $1 / 4$ the momentum of Vehicle 2.
2. \mathbf{C} According to the law of conservation of momentum...
A. The total momentum of stationary objects must equal the momentum of the same objects when moving.
B. Moving objects have momentum, stationary objects have zero momentum.
C. The sum of momentums before interactions must equal the sum of momentums after interactions.
D. The total momentum before objects accelerate must equal the total momentum after objects accelerate.

See the colliding objects. Two objects are about to
3. D have an elastic collision. What will be outcome of
\qquad velocities after the collision?
A. Object 1 moves at $0 \mathrm{~m} / \mathrm{s}$. Object 2 moves at $15.0 \mathrm{~m} / \mathrm{s}$.
B. Object 1 moves at $-10.0 \mathrm{~m} / \mathrm{s}$. Object 2 moves at $5.0 \mathrm{~m} / \mathrm{s}$.
C. Object 1 moves at $-5 \mathrm{~m} / \mathrm{s}$. Object 2 is at $10 \mathrm{~m} / \mathrm{s}$.
D. Object 1 moves at $5 \mathrm{~m} / \mathrm{s}$. Object 2 moves at $10 \mathrm{~m} / \mathrm{s}$.

\square	\square
Object 1 10 kg $10 \mathrm{~m} / \mathrm{s}$	Object 2
	10 kg
	$5 \mathrm{~m} / \mathrm{s}$

List five important facts about momentum	- Equals mass times velocity - Equation is $\mathrm{p}=\mathrm{mv}$ - Is a vector - Proportional to mass - Proportional to velocity
What is kinetic energy?	Energy of motion
What is impulse?	A force applied over a length of time
What is the relationship between contact time and force when impulse happens?	The force and contact time are inversely proportional. As contact time increases the amount of force decreases and vice versa.

Calculations Practice

A man rides his bicycle with a velocity of $8.4 \mathrm{~m} / \mathrm{s}$. The mass of the man and his bike together is 104 kg.	$\mathrm{p}=873.6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate momentum. Calculate kinetic energy.	$\mathrm{KE}=3669.12 \mathrm{~J}$
A man rides his bicycle with a velocity of $7.5 \mathrm{~m} / \mathrm{s} . \mathrm{His}$ momentum is $575 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.	$\mathrm{m}=76.67 \mathrm{~kg}$
Calculate his mass.	

A tennis ball moves with an initial velocity of $-40 \mathrm{~m} / \mathrm{s}$. It is hit by the tennis racket, it changes direction, and it moves with a final velocity of $32 \mathrm{~m} / \mathrm{s}$. The mass of the tennis ball was 0.120 kg . The force of impact was 1.92 N .

Calculate initial momentum.	$p_{\mathrm{i}}=-4.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate final momentum.	$\mathrm{p}_{\mathrm{f}}=3.84 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate the impulse	Impulse $=\Delta \mathrm{p}=8.64 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate the contact time between the tennis racket and the tennis ball.	$\mathrm{t}=4.5 \mathrm{~s}$
Calculate the acceleration of the ball.	$\mathrm{a}=16 \mathrm{~m} / \mathrm{s}^{2}$

A car collided with utility pole. The car came to a stop in 0.68 seconds. The mass of the car was 500 kg . The velocity of the car just before impact was $12 \mathrm{~m} / \mathrm{s}$.

Calculate initial momentum.	$\mathrm{p}_{\mathrm{i}}=6000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate final momentum.	$\mathrm{p}_{\mathrm{f}}=0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate the impulse.	Impulse $=\Delta \mathrm{p}=-6000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Calculate the acceleration of the car when it impacted the pole.	$\mathrm{a}=-17.65 \mathrm{~m} / \mathrm{s}^{2}$
Calculate the force of impact.	$\mathrm{F}=-8824 \mathrm{~N}$

