UNIT 4 PRACTICE EXAM

## Momentum, Impulse, \& Collisions

Vehicle \#1 has a mass of 500 kg and moves with a velocity of $10 \mathrm{~m} / \mathrm{s}$.

1. $\qquad$ Vehicle \#2 has a mass of 1000 kg and moves with a velocity of $10 \mathrm{~m} / \mathrm{s}$.
A. Vehicle 1's momentum is 2-times greater than Vehicle 2's momentum.
B. Vehicle 1's momentum is 4-times greater than Vehicle 2's momentum.
C. Vehicle 1 's momentum is $1 / 2$ the momentum of Vehicle 2.
D. Vehicle 1's momentum is $1 / 4$ the momentum of Vehicle 2.
2. $\qquad$ According to the law of conservation of momentum...
A. The total momentum of stationary objects must equal the momentum of the same objects when moving.
B. Moving objects have momentum, stationary objects have zero momentum.
C. The sum of momentums before interactions must equal the sum of momentums after interactions.
D. The total momentum before objects accelerate must equal the total momentum after objects accelerate.

See the colliding objects. Two objects are about to
3. $\qquad$ velocities after the collision?
A. Object 1 moves at $0 \mathrm{~m} / \mathrm{s}$. Object 2 moves at $15.0 \mathrm{~m} / \mathrm{s}$.
B. Object 1 moves at $-10.0 \mathrm{~m} / \mathrm{s}$. Object 2 moves at $5.0 \mathrm{~m} / \mathrm{s}$.
C. Object 1 moves at $-5 \mathrm{~m} / \mathrm{s}$. Object 2 is at $10 \mathrm{~m} / \mathrm{s}$.
D. Object 1 moves at $5 \mathrm{~m} / \mathrm{s}$. Object 2 moves at $10 \mathrm{~m} / \mathrm{s}$.


|  |  |
| :--- | :--- | | List five important facts |
| :--- |
| about momentum |\(~\left(\begin{array}{ll|} <br>

\hline What is kinetic energy? \& <br>
\hline What is impulse? \& <br>
\hline $$
\begin{array}{l}\text { What is the relationship } \\
\text { between contact time } \\
\text { and force when impulse } \\
\text { happens? }\end{array}
$$ \& <br>
\hline\end{array}\right.\)

| What is the equation to <br> solve for kinetic <br> energy? |  | What is the equation to <br> solve for momentum? |  |
| :--- | :--- | :--- | :--- |
| What is the equation for <br> the impulse-momentum <br> theorem? |  |  |  |
| What is an elastic <br> collision? |  |  |  |
| What is an inelastic <br> collision? |  |  |  |

## Calculations Practice

| A man rides his bicycle with a |  |
| :--- | :--- |
| velocity of $8.4 \mathrm{~m} / \mathrm{s}$. The mass of |  |
| the man and his bike together is |  |
| 104 kg. |  |
|  |  |
| Calculate momentum. |  |
| Calculate kinetic energy. |  |
|  |  |
| A man rides his bicycle with a |  |
| velocity of $7.5 \mathrm{~m} / \mathrm{s}$. His |  |
| momentum is $575 \mathrm{kgm} / \mathrm{s}$. |  |
| Calculate his mass. |  |

A tennis ball moves with an initial velocity of $-40 \mathrm{~m} / \mathrm{s}$. It is hit by the tennis racket, it changes direction, and it moves with a final velocity of $32 \mathrm{~m} / \mathrm{s}$. The mass of the tennis ball was 0.120 kg . The force of impact was 1.92 N .

| Calculate initial momentum. |  |
| :--- | :--- |
| Calculate final momentum. |  |
| Calculate the impulse |  |
| Calculate the contact time between <br> the tennis racket and the tennis <br> ball. |  |
| Calculate the acceleration of the <br> ball. |  |

A car collided with utility pole. The car came to a stop in 0.68 seconds. The mass of the car was 500 kg . The velocity of the car just before impact was $12 \mathrm{~m} / \mathrm{s}$.

| Calculate initial momentum. |  |
| :--- | :--- |
| Calculate final momentum. |  |
| Calculate the impulse |  |
| Calculate the acceleration of the |  |
| car when it impacted the pole. |  |
| Calculate the force of impact. |  |

