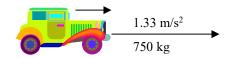
Name:	Block:	

HONORS PHYSICS Unit 2: Forces and Dynamics

Part 1: Forces Vocabulary. Fill in the blank. Neatly print the vocabulary words into the paragraph on the lines.

Acceleration Accelerate Contact	Inertia Isaac Kilograms	Laws Mass Newtons	Pull Push Vector	
Forces	are			or
		interactions be	tween two objects.	Forces can be
classified as		force	es or as action-at-a	-distance forces.
Forces cause object	ets to		, or chang	ge their states of
motions. Force is a			because it has	a magnitude and
a direction. The ur	nits of force are _			named after the
famous English se	cientist		Newtor	n. Forces are
calculated b	y multiply	ying		and
		together. Whe	n calculating force	s, the mass must
always be in units	of		·	
Newton's th	ree		of motion describ	be in detail how
forces affect object	s and matter. For	r example, some o	bjects resist acceler	rating when they
are subjected to for	orces because of	the property		·
Objects with greate	er mass resist acc	elerating whereas	objects with lesser	mass accelerate
easier				

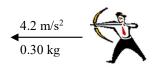

Part 2: Calculating Forces. Calculate force, acceleration, and mass. Show all work. Complete the calculations in the box. Circle your final answer. Use correct units.

- Critically read the problem.
- Identify the important parameters and their units.
- Identify the parameter for which the problem asks to solve.
- Choose the correct equation
- Solve the problem

$$F = m \cdot a$$

$$a = \frac{F}{m}$$

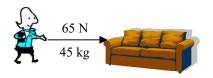
$$a = \frac{F}{m}$$
 $m = \frac{F}{a}$


1. The motor of a car accelerates a car by 1.33 m/s². The mass of the car is 750 kg. Calculate the force of the motor causing the car to move. Report your answer in Newtons.

Solve the problem. Show all work.	Your answer

2. The brakes of a car accelerate the car by -1.80 m/s^2 . The mass of the car is 750 kg. Calculate the force of the brakes causing the car to slow. Report your answer in Newtons. The road has no friction.

Solve the problem. Show all work.	Your answer


3. Tyrell is an expert archer. Tyrone's bow launches an arrow with an acceleration of 4.2 m/s^2 . The mass of the arrow is 0.30 kg. Calculate the force of the bow launching the arrow. Report your answer in Newtons.

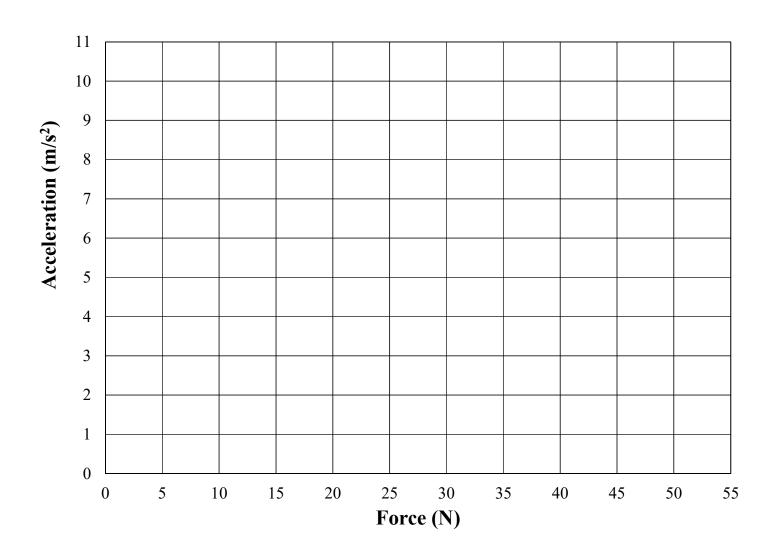
Solve the problem. Show all work.	Your answer

4. Jorge is a professional soccer player. Jorge kicks the soccer ball with a force of 11 N. The mass of the soccer ball is 1.25 kg. Calculate the acceleration experienced by the soccer ball. Report your answer in m/s².

Solve the problem. Show all work.	Your answer

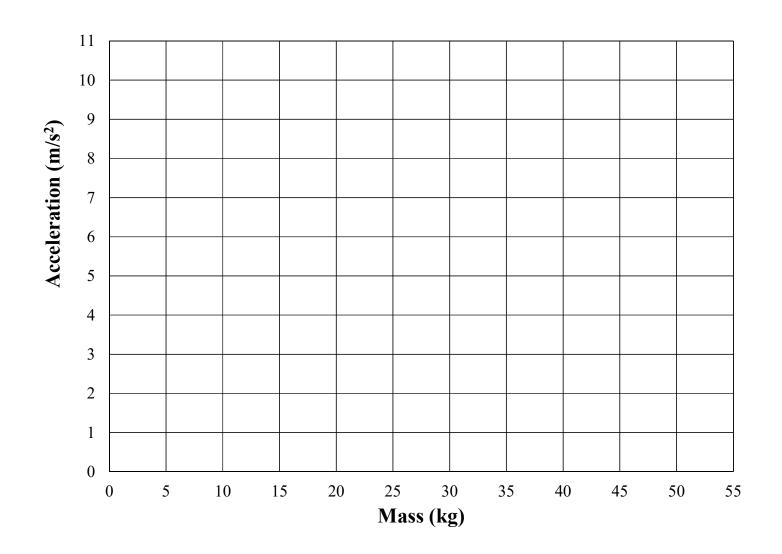
5. Alicia rearranged the furniture in her apartment. She pushed her sofa with a force of 65 N. The mass of her sofa was 45 kg. Calculate the acceleration experienced by the sofa being pushed across the floor. Report your answer in m/s². The floor has no friction.

Solve the problem. Show all work.	Your answer


6. A golf ball sits upon a tee. The golf ball is accelerated by 22 m/s² after being struck by a driver club. The force of impact was 0.88 N. Calculate the mass of the golf ball. Air resistance is very small.

Solve the problem. Show all work.	Your answer

Part 3. Graphing acceleration

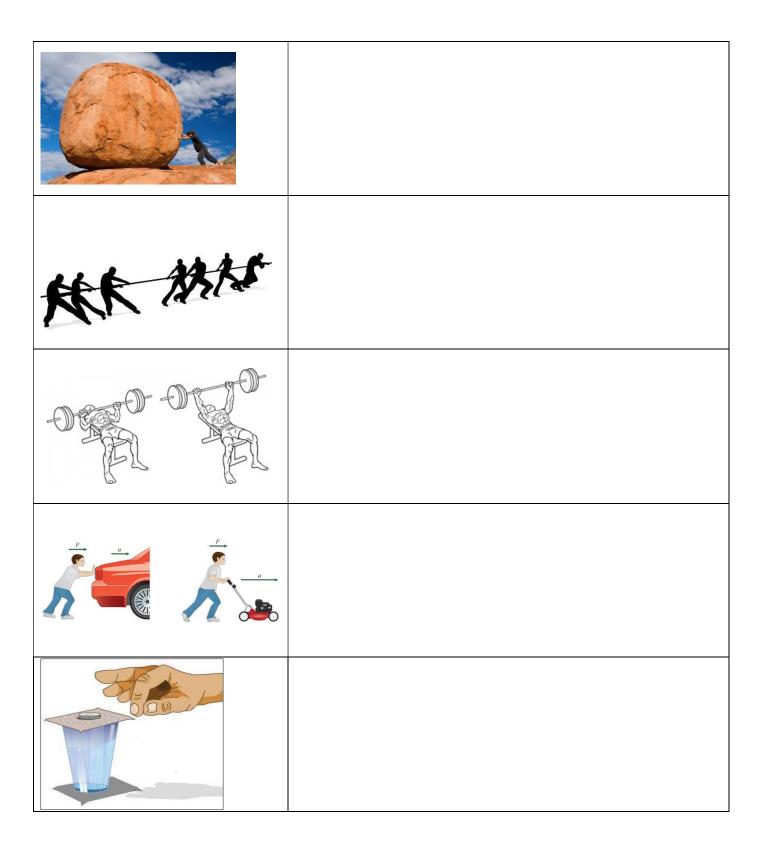

#1. The mass of the object remains constant and the force causing the acceleration increases. Calculate the acceleration of the object. Plot the acceleration data as points on the graph. Draw one curving best-fit line through the data points. $a = \frac{F}{m}$

Force (N)	0	5	10	15	20	25	30	35	40	45	50
Mass (kg)	5	5	5	5	5	5	5	5	5	5	5
Accel (m/s ²)											

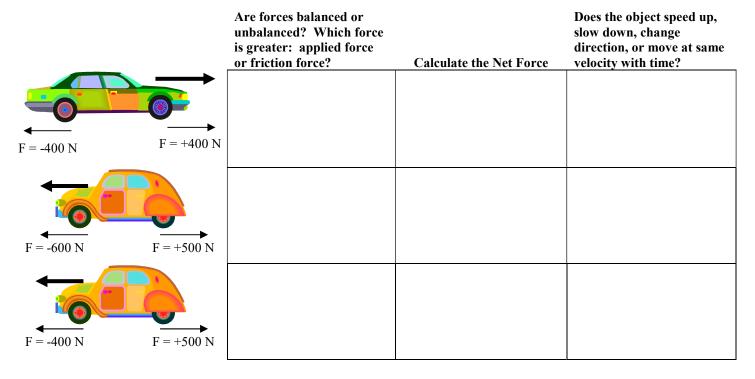
#2. The force causing the acceleration remains constant and mass increases. Calculate the acceleration of the object. Plot the acceleration data as points on the graph. Draw one curving best-fit line through the data points. $a = \frac{F}{m}$

Force (N)	10	10	10	10	10	10	10	10	10	10	10
Mass (kg)	1	2	4	6	8	10	15	20	30	40	50
Accel (m/s ²)											

Part 4: Newton's Laws Vocabulary. Fill in the blank. Neatly print the vocabulary words into the paragraph on the lines.


Acceleration	Force	Mass	Opposite	
Decreases	Increases	Motion	Rest	
Equal	Inertia	Newton	Unbalanced	
The English scient	ist Sir Isaac		develo	oped three laws of
motion. The 1st La	w of Motion is c	alled the "law	of	
This law states that	objects in motion	will remain in _		and
objects at rest will	remain at		unless	s acted upon by an
			·	The 2 nd Law of
Motion states that	t the		experienced	by an object is
proportional to	the force an	d inversely	proportional t	o the object's
	T	this means that	as more unbalanc	ed force is applied
to an object, its acc	celeration		It also	o means that as an
object's mass incre	eases, the accelera	ation		for a given
unbalanced force.	The 3 rd Law o	f Motion states	s that for every	force there is an
	, bu	ıt		force. This
means that whenev	er one object push	es on another ob	oject, the other obj	ject pushes equally
hard back.				

Part 5: Multiple Choice. Write the letter of the correct answer on the line to the left of the question or statement. Some statements are generalizations or misconceptions about Newton's laws, and do not have a correct answer.


1	The more mass an object has, the more force required to accelerate the object.							
•	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
2	What goes up, events	ually must go down.						
•	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
3	Eventually all object		o motion.					
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
1			is proportional to the fo	orce causing the				
. 4	acceleration and inve A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
5	If two objects interacted by the other		one object is equal to	and opposite the force				
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
6	=		in a straight line at a co	= = = = = = = = = = = = = = = = = = = =				
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
7	Objects affected by u motion.	inbalanced external fo	rces will have a change	e in its original state of				
•	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
8	Eventually all object	s in motion will come	to a rest.					
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
9	You have two magnet other magnet. The m			near the north pole of th				
•	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
10	•	•	esser mass is bounced a horter distance after the					
•	A. 1st Law	B. 2 nd Law	C. 3 rd Law	D. None				
11	You ride in a car. The turns.	ne car makes a sharp le	eft turn. Your body lea	ns to the right as the car				
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				
12		res. The hot air expells the rocket into the air	ed by the rocket boosts	er pushes against the				
. 12	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None				

Part 6: Newton's Laws of Motion

Study the ten images in the left column. In the right column, identify which of Newton's laws of motion applies, and write one complete sentence that justifies why that law applies.

Part 7. Friction, Balanced and Unbalanced Forces. Look at the diagram. The heavy black arrow points in the direction of the car's motion. The force vector arrows show the direction of the forces acting upon the cars. Friction force is in the direction opposite of the car's motion.

Part 8: Drawing 2-dimensional Free Body Diagrams. Neatly draw the free body diagram using vectors. Represent the free body as a square. The vector arrows must be proportional in length to the magnitude. Write the magnitude next to the vector arrow. The initial velocity of the free body is provided for you.

1. 40 N south, 30 N north, 10 N north. Object is moving north at 10 m/s.	2. 25 N west, 25 N east, 15 N east. Object is moving west at 20 m/s.		

4. 10 N west, 25 N west, 50 N south, 10 N north, 40 N. Object is moving west at 10 m/s.		

Look at the free body diagrams you drew 1, 2, 3, 4. Answer the questions below.

FBD	Are forces balanced or unbalanced?	Calculate the Net Force	In which direction is the acceleration?	Will the object get faster, get slower, remain motionless, or change direction?
1.				
2.				
3.				
4.				