

Week of Aug 6-10

The Nature of Science

What is science?

What is science?

A method for increasing our knowledge about the physical world.

- Characterized by its reliance on experimental evidence and its openness to revision in light of new evidence
- Best method we have to increase *physical* knowledge
- Not the *only* source of knowledge

Old Model: "The Scientific Method"

The Scientific Method is an outdated way of describing the process of science

Science & Engineering Practices

Experimental Design

How do we make an experiment that gives us trustworthy results?

Experimental Design

Two students are investigating whether fertilizer will make a certain type of plant grow faster

Student A prepares two garden pots. One is given fertilizer and the other is not. Other than that, the two pots are kept the same (same amount of water, sunlight, etc.)

Student B prepares two pots, one with fertilizer and the other without. The pots also get different amounts of water and sunlight.

Experimental Design

- To test a hypothesis or answer an investigation question, we must know what is causing the effects of an experiment
- We do this using a controlled experiement

Experimental Variables

- An experimental variable is any characteristic of an experiment set up that can be *varied*, or changed
- They come in three categories

Experimental Design

 When designing a controlled experiment, you need to have one independent variable that you vary. As the independent variable changes, you measure the resulting change in the dependent variable. All other variables are controlled variables, meaning they stay the same.

Independent Variable

- The variable that you vary during the experiment
- You decide what values the independent variable will take
- There should only be one in your experiment!
- In our example experiment, the independent variable was the amount of fertilizer each pot received

Dependent Variable

- The variable that you observe to see how it changes as you change the independent variable
- Called dependent variable because its value will *depend* on the value of the independent variable
- There should only be one in your experiment
- In our example experiment, the dependent variable was the height of the plants

Controlled Variables

- If we vary other variables besides the independent variable, we will have no way to know what is causing the change of the dependent variable
- Therefore, all other variables besides the independent variable should be kept constant (or controlled)
- In our example experiment, Student A controlled these variables: amount of sunlight, amount of water, etc.

Another Example

Question: Will a football filled with helium travel farther than a football filled with just air?

- Independent: the type of gas in the football
- Dependent: how far the football travels
- Controlled: the air pressure in the ball, mechanical throwing device (same throw each time), both tests done at the same altitude

Measurement Errors

Why do we perform multiple trials in experiments?

Measurement Errors

- Every individual measurement will have some amount of error
- Performing multiple measurements (trials) and averaging the values reduces the error and gives us a more accurate result

Accuracy vs. Precision

Relationships Between Variables

Proportional relationship: both variables change in the same direction

- As x increases, y increases
- As x decreases, y decreases

Inversely proportional relationship: the variables change in opposite directions

- As x increases, y decreases
- As x decreases, y increases

Positive slope: values of x increase, values of y increase.

Negative slope: values of x increase, values of y decrease.

Slope of zero: values of x increase, values of y remain constant.

Units & Unit Conversion

How do we describe our measurements?

What is a unit standard?

- A set of units of measurement that a group of people agree to use
- Allows them to communicate measurements to each other accurately

SI System

- Almost the entire world uses the SI (Systeme Internationale) System
 - Also known as the metric system
- ALL scientists use the SI System

What unit do we use to measure...

- ...mass?Kilogram (kg)
- ...distance? • Meter (m)
- ...time?
 - Second (s)

S				
Prefix	Symbol	Scientific Notation	Decimal	Common Word
tera	т	1012	100000000000	trillion
giga	G	10 ⁹	100000000	billion
mega	М	10 ⁶	1000000	million
kilo	k	10 ³	1000	thousand
		10 ⁰	1	one
milli	m	10 ⁻³	0.001	thousandth
micro	μ	10-6	0.000001	millionth
nano	n	10 ⁻⁹	0.00000001	billionth
pico	р	10-12	0.00000000001	trillionth

Scalars & Vectors

Scalars & Vectors

In physics, we deal with two kinds of quantities: scalars and vectors

- **1.** Scalars: only have magnitude
- 2. Vectors: have magnitude AND direction

Magnitude = size, amount, how much

Scalars

- Only have magnitude
- For example:
 - Temperature
 - Mass
 - Density
 - Time

Vectors

- Have magnitude AND direction
- For example:
 - Velocity
 - Acceleration
 - Force

Signs

By convention, certain directions are considered positive (+) and others are considered negative (-)

Positive (+)

• North, East, up, right, 0°, 90°

Negative (-)

• South, West, down, left, 180°, 270°

Writing a Vector

- Give the magnitude (number and unit) AND the direction relative to a frame of reference
- For example:
 - 5 meters, N
 - 2 meters/second, 180°
 - 10 Newtons, SE

Adding Vectors (Along One Line)

To add two or more vectors that are directed along the same line (for example, North-South or East-West):

- 1. Give each vector's magnitude the proper (+) or (-) sign depending on the vector's direction
- 2. Add the magnitudes and signs together

The sign of the sum tells you the direction of the resulting vector sum

Adding Vectors (In Perpendicular Directions)

To add two vectors that point in perpendicular directions (for example, one is East and the other is North), you must use the Pythagorean Theorem.

The two vectors you are adding make up the legs of a right triangle. The vector sum is the hypotenuse of the right triangle. Calculate the magnitude with

$$C = \sqrt{A^2 + B^2}$$

