Kinematic Equations Practice

Problem	Variables	Kinematic Equation(s)	Modified Equation(s) (if applicable)	Plug In & Solve
#1 An airplane accelerates down a runway at 3.20 m/s ² for 32.8 s until it finally lifts off the ground. Determine the <i>distance</i> traveled before takeoff.	$\vec{v}_i = \underline{\qquad}$ $\vec{v}_f = \underline{\qquad}$ $\Delta t = \underline{\qquad}$ $\Delta x = \underline{\qquad}$ $\vec{a} = \underline{\qquad}$			(Answer: 1720 m)
#2 A car starts from rest and accelerates uniformly over a time of 5.21 seconds for a distance of 110 m. Determine the <i>acceleration</i> of the car.	$\vec{v}_i = \underline{\qquad}$ $\vec{v}_f = \underline{\qquad}$ $\Delta t = \underline{\qquad}$ $\Delta x = \underline{\qquad}$ $\vec{a} = \underline{\qquad}$			(Answer: 8.10 m/s ²)

#3 A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. Determine the <i>acceleration</i> of the car AND the <i>distance</i> traveled.	$\vec{v}_i = \underline{\qquad}$ $\vec{v}_f = \underline{\qquad}$ $\Delta t = \underline{\qquad}$ $\Delta x = \underline{\qquad}$ $\vec{a} = \underline{\qquad}$		(<i>Answer</i> : 11.2 m/s ² & 79.8 m)
#4 A feather is dropped from a height of 1.40 meters. The acceleration of the feather is 1.67 m/s ² . Determine the <i>time</i> for the feather to fall to the surface.	$\vec{v}_i = \underline{\qquad}$ $\vec{v}_f = \underline{\qquad}$ $\Delta t = \underline{\qquad}$ $\Delta x = \underline{\qquad}$ $\vec{a} = \underline{\qquad}$		(<i>Answer:</i> 1.29 s)

Source: The Physics Classroom (http://www.physicsclassroom.com/class/1DKin/Lesson-6/Sample-Problems-and-Solutions)