Kinematic Equations Practice

| Problem | Variables | Kinematic Equation(s) | Modified Equation(s) (if applicable) | Plug In \& Solve |
| :---: | :---: | :---: | :---: | :---: |
| \#1 An airplane accelerates down a runway at $3.20 \mathrm{~m} / \mathrm{s}^{2}$ for 32.8 s until it finally lifts off the ground. Determine the distance traveled before takeoff. | $\vec{v}_{i}=$ $\qquad$ $\vec{v}_{f}=$ $\qquad$ $\Delta t=$ $\qquad$ $\Delta x=$ $\qquad$ $\vec{a}=$ $\qquad$ |  |  | (Answer: 1720 m ) |
| \#2 A car starts from rest and accelerates uniformly over a time of 5.21 seconds for a distance of 110 m . Determine the acceleration of the car. | $\vec{v}_{i}=$ $\qquad$ $\vec{v}_{f}=$ $\qquad$ $\Delta t=$ $\qquad$ $\Delta x=$ $\qquad$ $\vec{a}=$ $\qquad$ |  |  | (Answer: $8.10 \mathrm{~m} / \mathrm{s}^{2}$ ) |



Source: The Physics Classroom (http://www.physicsclassroom.com/class/1DKin/Lesson-6/Sample-Problems-and-Solutions)

