Free Fall Problems Practice

Problem	Given	Equation(s)	Plug in and solve
#1 A quarter is thrown off a bridge. After 1.2 seconds, the quarter is traveling at -21 m/s. What was the initial velocity of the quarter?	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$		
			(<i>Answer</i> : -9.2 m/s)
#2 How long does it take a golf ball dropped from a skyscraper to fall 53.1 m?	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$		(<i>Answer:</i> 3.29 s)
#3 You throw a ball straight upward at 5 m/s. The ball moves upward, comes to a momentary rest, and then falls downward. How long does it take for the ball to come to the momentary rest at the top of the throw? [Hint: What is the velocity (v_f) at the top of the throw?]	$v_i = $ $v_f = $ t = $\Delta y = $		(<i>Answer:</i> 0.5 s)

#4 A bowling ball is thrown down from a bridge at -2.7 m/s. Calculate its velocity after 2.8 seconds.	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$	(<i>Answer</i> : -30 m/s)
#5 An alien on Planet X drops a rock off a cliff. When the rock has fallen for 4 seconds, it is travelling at -11.3 m/s. What is the value of g on Planet X?	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$	(<i>Answer:</i> 2.83 m/s ²)
#6 How far has a rock fallen 8 seconds after it is thrown upward at 9.6 m/s?	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$	(<i>Answer</i> : -237 m)
#7 A tennis ball is thrown upward at 4 m/s. How long until the tennis ball is travelling at -4 m/s?	$v_i = \$ $v_f = \$ $t = \$ $\Delta y = \$	(Answer: 0.8 s)

#8 How far has a rock fallen 6 seconds after being thrown downward at -3.9 m/s?	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$	(<i>Answer:</i> -200 m)
#9 How long does it take a baseball thrown upward at 3.6 m/s to reach a velocity of -16 m/s?	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$	(Answer: 2.0 s)
#10 You drop a tennis ball off the roof of a building. How far has the tennis ball fallen when it is moving at -7.2 m/s? [Hint: This is a two-step problem. First, find how long it takes to be traveling at -7.2 m/s. Then, find how far it fell in that time.]	$v_i = \underline{\qquad}$ $v_f = \underline{\qquad}$ $t = \underline{\qquad}$ $\Delta y = \underline{\qquad}$	(<i>Answer</i> : -2.6 m)