PHYSICS Forces Practice

Part 1: Forces Vocabulary. Fill in the blank. Neatly print the vocabulary words into the paragraph on the lines.

Acceleration Accelerate Contact	Inertia Isaac Kilograms	Laws Mass Newtons	Pull Push Vector	
Forces are				or
	interaction	ons between two	o objects. For	ces can be
classified as		_ forces or as ac	tion-at-a-dista	nce forces.
Forces cause objects to		,	or change the	ir states of
motions. Force is a		becau	se it has a mag	nitude and
a direction. The units of force	e are		name	ed after the
famous English scientist _			_Newton.	Forces are
calculated by n	nultiplying			and
	together.	When calculat	ing forces, the	mass must
always be in units of		·		
Newton's three		of motic	n describe in	detail how
forces affect objects and matt	er. For example, s	some objects resi	st accelerating	when they
are subjected to forces beca	use of the proper	rty		·
Objects with greater mass res	ist accelerating w	hereas objects w	ith lesser mass	accelerate
easier.				

Part 2: Calculating Forces. Calculate force, acceleration, and mass. **Show all work**. Complete the calculations in the box. Circle your final answer. Use correct units.

- Critically read the problem.
- Identify the important parameters and their units.
- Identify the parameter for which the problem asks to solve.
- Choose the correct equation
- Solve the problem

$$F = m \cdot a$$
 $a = \frac{F}{m}$ $m = \frac{F}{a}$

1. The motor of a car accelerates a car by 1.33 m/s^2 . The mass of the car is 750 kg. Calculate the force of the motor causing the car to move. Report your answer in Newtons.

Solve the problem. Show all work.	Your answer

2. The brakes of a car accelerate the car by -1.80 m/s^2 . The mass of the car is 750 kg. Calculate the force of the brakes causing the car to slow. Report your answer in Newtons. The road has no friction.

Solve the problem. Show all work.	Your answer

3. Tyrell is an expert archer. Tyrone's bow launches an arrow with an acceleration of 4.2 m/s^2 . The mass of the arrow is 0.30 kg. Calculate the force of the bow launching the arrow. Report your answer in Newtons.

Solve the problem. Show all work.	Your answer

4. Jorge is a professional soccer player. Jorge kicks the soccer ball with a force of 11 N. The mass of the soccer ball is 1.25 kg. Calculate the acceleration experienced by the soccer ball. Report your answer in m/s^2 .

Solve the problem. Show all work.	Your answer

5. Alicia rearranged the furniture in her apartment. She pushed her sofa with a force of 65 N. The mass of her sofa was 45 kg. Calculate the acceleration experienced by the sofa being pushed across the floor. Report your answer in m/s^2 . The floor has no friction.

Solve the problem. Show all work.	Your answer

6. A golf ball sits upon a tee. The golf ball is accelerated by 22 m/s^2 after being struck by a driver club. The force of impact was 0.88 N. Calculate the mass of the golf ball. Air resistance is very small.

Solve the problem. Show all work.	Your answer

Part 3. Graphing acceleration

#1. The mass of the object remains constant and the force causing the acceleration increases. Calculate the acceleration of the object. Plot the acceleration data as points on the graph. Draw one curving best-fit line through the data points. $a = \frac{F}{m}$

Force (N)	0	5	10	15	20	25	30	35	40	45	50
Mass (kg)	5	5	5	5	5	5	5	5	5	5	5
Accel (m/s ²)											

#2. The force causing the acceleration remains constant and mass increases. Calculate the acceleration of the object. Plot the acceleration data as points on the graph. Draw one curving best-fit line through the data points. $a = \frac{F}{m}$

Force	e (N)	10	10	10	10	10	10	10	10	10	10	10
Mass	(kg)	1	2	4	6	8	10	15	20	30	40	50
Acce	(m/s ²)											
	11											
	10											
²)	9 —											
(m/s	8 —											
tion	7 —											
lera	6 —											
Acce	5 —											
ł	4											
	3											
	2											
	2											
	1											
		5	10	15	20	25	30	35			50	
	U	J	10	15	20	Mas	ss (kg)	55	40	43	50	55

Part 4: Newton's Laws Vocabulary. Fill in the blank. Neatly print the vocabulary words into the paragraph on the lines.

Accel Decr	eration eases	Force Increases	Mass Motion	Opposite Rest	
Eq	lual	Inertia	Newton	Unbalanced	
The English scien	ntist Sir Isaac	e		_ developed three	e laws of
motion. The 1 st L	aw of Motic	on is called the	"law of		".
This law states tha	t objects in n	notion will rema	in in		and
objects at rest wil	l remain at _			_unless acted up	on by an
				$_$. The 2 nd	Law of
Motion states the	at the		expe	rienced by an o	object is
proportional to	the forc	e and inve	rsely proportio	onal to the	object's
		This mean	is that as more un	nbalanced force is	s applied
to an object, its a	cceleration _			. It also means the	hat as an
object's mass inc	reases, the a	cceleration		for	a given
unbalanced force	. The 3 rd 1	Law of Motior	n states that for	every force the	re is an
		, but		for	ce. This
means that whene	ver one objec	et pushes on ano	ther object, the o	ther object pushe	s equally

hard back.

Part 5: Multiple Choice. Write the letter of the correct answer on the line to the left of the question or statement. Some statements are generalizations or misconceptions about Newton's laws, and do not have a correct answer.

1	The more mass an obj	ect has, the more force r	equired to accelerate the	e object.
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
-				
 2	What goes up, eventua	ally must go down.	c and t	
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
3	Eventually all objects	at rest will be put into n	notion	
 5	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
	The acceleration experi	rienced by an object is p	proportional to the force	causing the
 4	acceleration and inver-	sely proportional to the	mass of the object.	
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
	If two objects interact	the force everted by on	a object is equal to and	opposite the force
5	exerted by the other of	niect	ie object is equal to and	opposite the force
 5	A 1^{st} Law	B 2 nd Law	C 3 rd Law	D None
	11. I Law	D. 2 Law	C. J Law	D. Rolle
6	An object in motion w	ants to keep moving in	a straight line at a const	ant velocity.
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
_	Objects affected by un	balanced external force	s will have a change in i	its original state of
 7	motion.	D and I	a and r	5 M
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
8	Eventually all objects	in motion will come to	a rest	
 0	A 1 st Law	B 2^{nd} Law	$C 3^{rd}$ Law	D None
		D. 2 Dun	C. 5 Lutt	D. Tone
	You have two magnet	s. You place the south p	pole of one magnet near	the north pole of the
 9	other magnet. The ma	gnets quickly move tow	vard each other.	
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
	т 1° / 11° 1 1	1 751 1 41	· 1 1	4 1° 4 41
10	I wo objects collide ne	ead-on. The object lesse	er mass is bounced a gre	ater distance, the
 10	A 1 st L ow	D 2nd L our	$C = 2^{rd} I$ over	D None
	A. I Law	D. Z Law	C. 5 Law	D. None
	You ride in a car. The	e car makes a sharp left t	turn. Your body leans to	o the right as the car
11	turns.	1	5	0
	A. 1 st Law	B. 2 nd Law	C. 3 rd Law	D. None
	A rocket's booster fire	es. The hot air expelled	by the rocket booster pu	ushes against the
 12	ground, thus pushing t	he rocket into the air.	a and r	5 M
	A. 1^{st} Law	B. 2^{nu} Law	C. 3 rd Law	D. None

Part 6: Newton's Laws of Motion

Study the ten images in the left column. In the right column, identify which of Newton's laws of motion applies, and write one complete sentence that justifies why that law applies.

Part 7. Friction, Balanced and Unbalanced Forces. Look at the diagram. The heavy black arrow points in the direction of the car's motion. The force vector arrows show the direction of the forces acting upon the cars. Friction force is in the direction opposite of the car's motion.

Part 8: Drawing 2-dimensional Free Body Diagrams. Neatly draw the free body diagram using vectors. Represent the free body as a square. The vector arrows must be proportional in length to the magnitude. Write the magnitude next to the vector arrow. The initial velocity of the free body is provided for you.

1. 40 N south, 30 N north, 10 N north. Object is moving north at 10 m/s	2. 25 N west, 25 N east, 15 N east. Object is moving
moving north at 10 m/s.	

3. 20 N north, 35 N west. Object is motionless, 0 m/s.	4. 10 N west, 25 N west, 50 N south, 10 N north, 40 N. Object is moving west at 10 m/s.	

Look at the free body diagrams you drew 1, 2, 3, 4. Answer the questions below.

FBD	Are forces balanced or unbalanced?	Calculate the Net Force	In which direction is the acceleration?	Will the object get faster, get slower, remain motionless, or change direction?
1.				
2.				
3.				
4.				