## How to Solve for Net Force by Using Free Body Diagrams Practice Using a Graphic Organizer

Step 1: Read the word problem carefully. Draw the free body diagram using vector arrows to represent all forces affecting the object. List all of the forces acting upon the object.

- Group North and South forces together
- Group East and West forces together.

Step 2. Determine the net force in the N-S direction and the net force in the E-W direction.

- Calculate the net force acting upon the object in the North and South direction. North is $(+)$ and South is $(-)$

$$
F_{N-S}=F_{(\text {North })}+F_{(\text {South })}
$$

- Calculate the net force acting upon the object in the East and West direction. East is $(+)$ and West is $(-)$

$$
F_{E-W}=F_{(\text {East })}+F_{(\text {West })}
$$

Step 3. Redraw the free body diagram using only the net forces that remain in the N-S direction and the E-W direction.

Step 4. Determine the overall net force acting upon the object. Use the Pythagorean Theorem only if forces in two directions remain and a right triangle can be formed.

Step 5. Calculate the acceleration of the object by using the object's mass and the net force.

$$
a=\frac{F}{m}
$$



Example 1: A 25 kg box is being influenced by three forces: 8 N west, 10 N east, and 7 N south. Calculate the net force influencing the box.

Step 1: List all forces acting upon the object. 8 N west; 10 N east; 7 N south; 0 N north

Redrawn with net force vectors


Step 2: Calculate the net force in the north-south direction.
$F_{(N-S)}=0 N+(-7 N)=-7 N$
$7 \mathbf{N}$ Step 2: Calculate the net force in the east-west direction. $F_{(E-W)}=10 N+(-8 N)=+2 N$

Step 3: Redraw the free body diagram with only the remaining vectors. The remaining forces acting upon the box are 7 N south and 2 N east.

Step 4: Solve for the net force. Form a right triangle using the forces. Use the Pythagorean Theorem to solve for the overall net force and direction.

$$
F_{N E T}=\sqrt{(2 N)^{2}+(-7 N)^{2}}=7.3 N @ S E
$$

The net force acting upon the object is 7.3 N to the south east. The object will accelerate to the southeast.

Step 5. Solve for the acceleration. The mass of the box is 25 kg .

$$
a=\frac{F}{m}=\frac{7.3 \mathrm{~N}}{25 \mathrm{~kg}}=0.292 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} @ S E
$$



Example 2: A 40 kg box is being influenced by five forces: 8 N west, 10 N east, 2 N east, 12 N north, and 7 N south. Calculate the net force influencing the box.

Step 1: List all forces acting upon the object.
7 N south; 12 N north
8 N west; 10 N east; 2 N east
Step 2: Calculate the net force in the north-south direction.
$F_{(N-S)}=12 N+(-7 N)=5 N$

Redrawn with net force vectors


Step 2: Calculate the net force in the east-west direction.

$$
F_{(E-W)}=-8 N+10 N+2 N=4 N
$$

Step 3: Redraw the free body diagram with only the remaining vectors. The remaining forces acting upon the box are 5 N north and 4 N east.

Step 4: Solve for the net force. Form a right triangle using the forces. Use the Pythagorean Theorem to solve for the overall net force and direction.

$$
F_{N E T}=\sqrt{(4 N)^{2}+(5 N)^{2}}=6.50 N @ N E
$$

The net force acting upon the object is 6.50 N to the northeast. The object will accelerate to the northeast.

Step 5. Solve for the acceleration. The mass of the box is 40 kg .

$$
a=\frac{F}{m}=\frac{6.50 \mathrm{~N}}{40 \mathrm{~kg}}=0.162 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} @ N E
$$

